Package: MLPUGS 0.2.0

MLPUGS: Multi-Label Prediction Using Gibbs Sampling (and Classifier Chains)

An implementation of classifier chains (CC's) for multi-label prediction. Users can employ an external package (e.g. 'randomForest', 'C50'), or supply their own. The package can train a single set of CC's or train an ensemble of CC's -- in parallel if running in a multi-core environment. New observations are classified using a Gibbs sampler since each unobserved label is conditioned on the others. The package includes methods for evaluating the predictions for accuracy and aggregating across iterations and models to produce binary or probabilistic classifications.

Authors:Mikhail Popov [aut, cre]

MLPUGS_0.2.0.tar.gz
MLPUGS_0.2.0.zip(r-4.5)MLPUGS_0.2.0.zip(r-4.4)MLPUGS_0.2.0.zip(r-4.3)
MLPUGS_0.2.0.tgz(r-4.5-any)MLPUGS_0.2.0.tgz(r-4.4-any)MLPUGS_0.2.0.tgz(r-4.3-any)
MLPUGS_0.2.0.tar.gz(r-4.5-noble)MLPUGS_0.2.0.tar.gz(r-4.4-noble)
MLPUGS_0.2.0.tgz(r-4.4-emscripten)MLPUGS_0.2.0.tgz(r-4.3-emscripten)
MLPUGS.pdf |MLPUGS.html
MLPUGS/json (API)

# Install 'MLPUGS' in R:
install.packages('MLPUGS', repos = c('https://bearloga.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/bearloga/mlpugs/issues

Datasets:

On CRAN:

Conda:

classificationmachine-learningmcmcmulti-label-classificationsupervised-learning

4.74 score 11 stars 6 scripts 128 downloads 2 exports 0 dependencies

Last updated 5 years agofrom:4737d1d72f. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-winOKMar 15 2025
R-4.5-macOKMar 15 2025
R-4.5-linuxOKMar 15 2025
R-4.4-winOKMar 15 2025
R-4.4-macOKMar 15 2025
R-4.4-linuxOKMar 15 2025
R-4.3-winOKMar 15 2025
R-4.3-macOKMar 15 2025

Exports:eccvalidate_pugs

Dependencies:

Multi-label Classification with MLPUGS

Rendered fromtutorial.Rmdusingknitr::rmarkdownon Mar 15 2025.

Last update: 2016-07-04
Started: 2015-04-21