Package: MLPUGS 0.2.0

MLPUGS: Multi-Label Prediction Using Gibbs Sampling (and Classifier Chains)

An implementation of classifier chains (CC's) for multi-label prediction. Users can employ an external package (e.g. 'randomForest', 'C50'), or supply their own. The package can train a single set of CC's or train an ensemble of CC's -- in parallel if running in a multi-core environment. New observations are classified using a Gibbs sampler since each unobserved label is conditioned on the others. The package includes methods for evaluating the predictions for accuracy and aggregating across iterations and models to produce binary or probabilistic classifications.

Authors:Mikhail Popov [aut, cre]

MLPUGS_0.2.0.tar.gz
MLPUGS_0.2.0.zip(r-4.5)MLPUGS_0.2.0.zip(r-4.4)MLPUGS_0.2.0.zip(r-4.3)
MLPUGS_0.2.0.tgz(r-4.4-any)MLPUGS_0.2.0.tgz(r-4.3-any)
MLPUGS_0.2.0.tar.gz(r-4.5-noble)MLPUGS_0.2.0.tar.gz(r-4.4-noble)
MLPUGS_0.2.0.tgz(r-4.4-emscripten)MLPUGS_0.2.0.tgz(r-4.3-emscripten)
MLPUGS.pdf |MLPUGS.html
MLPUGS/json (API)

# Install 'MLPUGS' in R:
install.packages('MLPUGS', repos = c('https://bearloga.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/bearloga/mlpugs/issues

Datasets:

On CRAN:

classificationmachine-learningmcmcmulti-label-classificationsupervised-learning

4.74 score 11 stars 6 scripts 114 downloads 2 exports 0 dependencies

Last updated 5 years agofrom:4737d1d72f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 16 2024
R-4.5-winOKOct 16 2024
R-4.5-linuxOKOct 16 2024
R-4.4-winOKOct 16 2024
R-4.4-macOKOct 16 2024
R-4.3-winOKOct 16 2024
R-4.3-macOKOct 16 2024

Exports:eccvalidate_pugs

Dependencies:

Multi-label Classification with MLPUGS

Rendered fromtutorial.Rmdusingknitr::rmarkdownon Oct 16 2024.

Last update: 2016-07-04
Started: 2015-04-21